# WNE Linear Algebra <br> Resit Exam <br> Series A 

24 Feburary 2024

Please use separate sheets for different problems. Please use single sheet for all questions. Give reasons to your answers. Please provide the following data on each sheet

- name, surname and your student number,
- number of your group,
- number of the corresponding problem and the series.

Each problem is worth 10 marks. Each question is worth 4 marks.

## Problems

## Problem 1.

Let $V=\operatorname{lin}\left(((1,2,3,0),(2,3,3,1),(1,1,0,1))\right.$ be a subspace of $\mathbb{R}^{4}$.
a) find a basis $\mathcal{A}$ of the subspace $V$ and the dimension of $V$,
b) find coordinates of vector $v=(3,2,-3,4)$ relative to $\mathcal{A}$.

## Problem 2.

Let $V \subset \mathbb{R}^{4}$ be a subspace given by the homogeneous system of linear equations

$$
\left\{\begin{aligned}
2 x_{1}+3 x_{2}-7 x_{3}-x_{4} & =0 \\
x_{1}+2 x_{2}-4 x_{3} & =0
\end{aligned}\right.
$$

a) find a basis $\mathcal{A}$ and the dimension of the subspace $V$,
b) complete basis $\mathcal{A}$ to a basis of $\mathbb{R}^{4}$.

## Problem 3.

Let

$$
A=\left[\begin{array}{lll}
1 & 2 & 3 \\
3 & 4 & 6 \\
0 & t & 1
\end{array}\right]
$$

a) find all $t \in \mathbb{R}$ such that matrix $\left(A^{7}\right)^{\top}$ is invertible,
b) for $t=1$ find $A^{-1}$.

## Problem 4.

Let $\varphi: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be an endomorphism given by the formula

$$
\varphi\left(\left(x_{1}, x_{2}, x_{3}\right)\right)=\left(-4 x_{1}+6 x_{3}, x_{2}, 6 x_{1}-9 x_{3}\right) .
$$

a) find eigenvalues and bases of the corresponding eigenspaces of $\varphi$,
b) is endomorphism $\varphi$ diagonalizable? is matrix $M(\varphi)_{s t}^{s t}$ negative semidefinite? Justify your answers.

## Problem 5.

Let

$$
V=\left\{\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3} \mid x_{1}+2 x_{2}+3 x_{3}=0\right\},
$$

be a subspace of $\mathbb{R}^{3}$.
a) find an orthonormal basis of $V$ and an orthonormal basis of $V^{\perp}$,
b) find the formula of the orthogonal projection onto $V^{\perp}$.

## Problem 6.

Consider the following linear programming problem $2 x_{1}+x_{3}+x_{4} \rightarrow$ min in the standard form with constraints

$$
\left\{\begin{aligned}
& x_{1}+x_{3} \\
&=3 \\
& 2 x_{1}+3 x_{2}=1 \\
& \\
& \\
& \\
& x_{4}
\end{aligned} \text { and } x_{i} \geqslant 0 \text { for } i=1, \ldots, 5 .\right.
$$

a) which of the sets $\mathcal{B}_{1}=\{2,3,4\}, \mathcal{B}_{2}=\{3,4,5\}$ is basic feasible? write the corresponding basic solutions for both sets,
b) solve the linear programming problem using simplex method. Start from the basic feasible set taken from part a).

## Questions

## Question 1.

Let $A, B \in M(2 \times 2 ; \mathbb{R})$ be two symmetric matrices, that is $A^{\top}=A, B^{\top}=B$. If $A$ and $B$ are indefinite, does it follow that $A+B$ is indefinite?

## Solution 1.

No, it does not.

$$
\left[\begin{array}{rr}
2 & 0 \\
0 & -1
\end{array}\right]+\left[\begin{array}{rr}
-1 & 0 \\
0 & 2
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] .
$$

## Question 2.

Let $A \in M(2 \times 2 ; \mathbb{R})$ be a matrix. Does it follow that

$$
A=A^{\top} \quad \Longleftrightarrow \quad A^{\top} A=A A^{\top}
$$

## Solution 2.

No, it does not. Let

$$
A=\left[\begin{array}{rr}
0 & -1 \\
1 & 0
\end{array}\right] .
$$

Then $A \neq A^{\top}$ but

$$
A^{\top} A=A A^{\top}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

## Question 3.

If $a+b+c=0$ where $a, b, c \in \mathbb{R}$, does it follow that

$$
\operatorname{det}\left[\begin{array}{rrr}
-a & c & -b \\
b & -a & c \\
-c & b & -a
\end{array}\right]=0
$$

## Solution 3.

Yes, it does.

$$
\operatorname{det}\left[\begin{array}{rrr}
-a & c & -b \\
b & -a & c \\
-c & b & -a
\end{array}\right]=(-1)^{2} \operatorname{det}\left[\begin{array}{lll}
a & -c & b \\
b & -a & c \\
c & -b & a
\end{array}\right]=\operatorname{det}\left[\begin{array}{ccc}
a+b+c & -a-b-c & a+b+c \\
b & -a & c \\
c & -b & a
\end{array}\right]=0
$$

## Question 4.

Let $P, Q \in M(2 \times 2 ; \mathbb{R})$ be matrices of orthogonal projections. Assume that $P$ and $Q$ are simultaneously diagonalizable, that is there exists an invertible matrix $C \in M(2 \times 2 ; \mathbb{R})$ such that matrices $C^{-1} P C$ and $C^{-1} Q C$ are diagonal. Does it follow that $P Q$ is an orthogonal projection?

## Solution 4.

Yes, it does. If $P$ or $Q$ is equal 0 (projection onto $\{0\}$ ) or $I$ (projection onto $\mathbb{R}^{2}$ ) $P Q$ is an orthogonal projection. Otherwise, eigenvectors of $P$ corresponding to eigenvalues 0 and 1 are perpendicular, the same for $Q$. By the assumption, $P=Q$ or $P=I-Q$. In both cases $P Q$ is an orthogonal projection.

## Question 5.

Let $A, B \in M(2 \times 2 ; \mathbb{R})$ be two matrices. If $A$ is invertible and $B$ is not invertible, does it follow that $A+B$ is invertible?

## Solution 5.

No, it does not.

$$
\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]+\left[\begin{array}{rr}
-1 & 0 \\
0 & 0
\end{array}\right]=\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right] .
$$

